TEORIA GRACELI DAS FUNÇÕES. SE FUNDAMENTA EM TODOS OS TIPOS DE FUNÇÕES E SUAS ESPECIFICIDADES, E DIRECIONAMENTOS, E FORMAS DE RESOLUÇÕES. COMO INTEGRAIS, DERIVADAS, DE SÉRIES, SOMATÓRIAS, GEOMÉTRICAS, TRIGONOMÉTRICAS, LOGARÍTMICAS, EXPONENCIAIS, RACIONAIS E IRRACIONAIS, E OUTRAS. NÚMEROS DE GRACELI. = PI / 1.1 = 1 / P = P = PROGRESSÃO DE 3.
Postagens
- Gerar link
- X
- Outros aplicativos
[ ] / pk [ ] dx= {\displaystyle \int a^{cx}\;dx={\frac {1}{c\ln a}}a^{cx}\qquad {\mbox{(para }}a>0,{\mbox{ }}a\neq 1{\mbox{)}}} [ ] / pk [ ] dx= {\displaystyle \int xe^{cx}\;dx={\frac {e^{cx}}{c^{2}}}(cx-1)} [ ] / pk [ ] dx= {\displaystyle \int x^{2}e^{cx}\;dx=e^{cx}\left({\frac {x^{2}}{c}}-{\frac {2x}{c^{2}}}+{\frac {2}{c^{3}}}\right)} [ ] / pk [ ] dx= {\displaystyle \int x^{n}e^{cx}\;dx={\frac {1}{c}}x^{n}e^{cx}-{\frac {n}{c}}\int x^{n-1}e^{cx}dx} [ ] / pk [ ] dx= {\displaystyle \int {\frac {e^{cx}\;dx}{x}}=\ln |x|+\sum _{i=1}^{\infty }{\frac {(cx)^{i}}{i\cdot i!}}} [ ] / pk [ ] dx= {\displaystyle \int {\frac {e^{cx}\;dx}{x^{n}}}={\frac {1}{n-1}}\left(-{\frac {e^{cx}}{x^{n-1}}}+c\int {\frac {e^{cx}dx}{x^{n-1}}}\right)\qquad {\mbox{(para }}n\neq 1{\mbox{)}}} [ ] / pk [ ] dx= {\displaystyle ...